5 research outputs found

    Linear stability analysis of resonant periodic motions in the restricted three-body problem

    Full text link
    The equations of the restricted three-body problem describe the motion of a massless particle under the influence of two primaries of masses 1−μ1-\mu and μ\mu, 0≤μ≤1/20\leq \mu \leq 1/2, that circle each other with period equal to 2π2\pi. When μ=0\mu=0, the problem admits orbits for the massless particle that are ellipses of eccentricity ee with the primary of mass 1 located at one of the focii. If the period is a rational multiple of 2π2\pi, denoted 2πp/q2\pi p/q, some of these orbits perturb to periodic motions for μ>0\mu > 0. For typical values of ee and p/qp/q, two resonant periodic motions are obtained for μ>0\mu > 0. We show that the characteristic multipliers of both these motions are given by expressions of the form 1±C(e,p,q)μ+O(μ)1\pm\sqrt{C(e,p,q)\mu}+O(\mu) in the limit μ→0\mu\to 0. The coefficient C(e,p,q)C(e,p,q) is analytic in ee at e=0e=0 and C(e,p,q)=O(e^{\abs{p-q}}). The coefficients in front of e^{\abs{p-q}}, obtained when C(e,p,q)C(e,p,q) is expanded in powers of ee for the two resonant periodic motions, sum to zero. Typically, if one of the two resonant periodic motions is of elliptic type the other is of hyperbolic type. We give similar results for retrograde periodic motions and discuss periodic motions that nearly collide with the primary of mass 1−μ1-\mu

    Uniform distribution of integral points on 3-dimensional spheres via modular forms

    Get PDF
    AbstractThe problem of the asymptotic distribution of integral points on a sequence of expanding spheres x2 + y2 + z2 = mi [first penetrated by Linnik with his ergodic method] is shown to be attackable by analytic methods, especially via the theory of modular forms. Success depends on a new estimate for the Fourier coeff. of cusp forms of half integral dimension on the theta group, which we obtain after improving upon previously known estimates of the associated Kloostermann sums
    corecore